
CS 4530: Fundamentals of Software Engineering
Module 13: Continuous Development

Adeel Bhutta and Mitch Wand

Khoury College of Computer Sciences

1

© 2023-24 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives for this lesson

• By the end of this lesson, you should be
able to…

• Describe how continuous development helps to
catch errors sooner in the software lifecycle

• Describe strategies for performing quality-
assurance on software as and after it is delivered

• Compare and contrast continuous delivery with
test driven development as a quality assurance
strategy

Review: The Agile Model Reduces Risk by
Embracing Change (~2000)

• The Waterfall philosophy:
• "The project is too large and complex, and it will take months

(or years!) to plan, so once we come up with the plan, that
plan can not change"

• Reduce risk by proceeding in stages

• The Agile philosophy:
• The project is too large and complex, it is unlikely that we will

know exactly what we need right now, and to some extent,
we are inventing something new. We think that as we make
it, we will figure it out as we go”

• Reduce risk by limiting time on any one stage; then reassess.
(“time-boxing”)

• Reduce risk through automated testing

3

Agile values fast quality feedback loops

• Faster feedback = lower cost to fix bugs

Agile requires a quality assurance process

• Multiple processes have to work together to ensure
quality:

• unit testing/TDD
• mix of unit tests & integration tests (we'll see more of

this)
• code review
• continuous integration (also: watch for canaries
• continuous deployment (A/B, canaries, etc.)
• quality includes non-functional requirements (resource

consumption, response time) or generally speaking
extensibility, maintainability, etc.

• Quality is everyone’s responsibility

5

Example: Some bugs slip through testing,
even in highly-regulated industries

6https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

“That morning, a software bug in an update to the
DynamicSource tool caused it to provide seriously undervalued
weights for the airplanes.

The Alaska 737 captain said the data was on the order of 20,000
to 30,000 pounds light. With the total weight of those jets at
150,000 to 170,000 pounds, the error was enough to skew the
engine thrust and speed settings.

Both planes headed down the runway with less power and at
lower speed than they should have. And with the jets judged
lighter than they actually were, the pilots rotated too early

Both the Max 9 and 737-900ER have long passenger cabins,
which makes them more vulnerable to a tail strike when the nose
comes up too soon.” …

… “A quick interim fix proved easy: When operations staff turned
off the automatic uplink of the data to the aircraft and switched
to manual requests “we didn’t have the bug anymore.”

Peyton said his team also checked the integrity of the calculation
itself before lifting the stoppage. All that was accomplished in 20
minutes.

The software code was permanently repaired about five hours
later.

Peyton added that even though the update to the
DynamicSource software had been tested over an extended
period, the bug was missed because it only presented when
many aircraft at the same time were using the system.

Subsequently, a test of the software under high demand was
developed.”

Photo: saiters_photography (IG, different plane/airpot)

https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

Continuous development practices improve
code quality and dev velocity

• Continuous integration: Perform frequent
integrations with entire codebase, running
integration-scale tests

• Continuous delivery: Deploy frequently
and monitor

Continuous Integration (CI) provides global
feedback on local changes

• Given: Our systems involve many components, some of
which might even be in different version control
repositories

• Consider: How does a developer get feedback on their
(local) change?

A CI process is a software pipeline

0…………….

Code Review Style Check

Compile

Unit Test

Prepare

Deployment

Integration Test

Load Test

Automate this centrally, provide a central record of results

KPIsEnd-to-end Test

Develop Build Test Deploy Monitor

CI is triggered by commits, pull requests,
and other actions

Example: Small scale CI, with a service like CircleCI,
GitHub Actions or TravisCI

commits code to

Developer

GitHub

TravisCI

checks for updates

Runs build for each

commit

GitHub
Actions

CircleCI

Automating Feedback Loops is Powerful

Consider tasks that are done by dozens of developers
(e.g. testing/deployment)

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/

https://xkcd.com/1205/

Typical CI pipeline

• Set up testing environment

• Set up tests

• Set up multiple input

• Run all tests against all inputs
• (preferably in parallel)

• Record results and performance in central
db

12

Combine

Result

Stage 3 Stage 3 Stage 3 Stage 3 Stage 3

Stage 2 Stage 2 Stage 2 Stage 2 Stage 2

Stage 1 Stage 1 Stage 1 Stage 1 Stage 1

Partition

Big Data (lots of work)

Continuous Integration is Highly
Configurable

• Determining how to apply CI can be non-trivial for a larger project,
all with a cost vs quality tradeoff: what is the cost of automation vs
the value of developer time?

• Do we integrate changes immediately, or do a pre-commit test?

• Which tests do we run when we integrate?

• When do we integrate code review?

• How do we compose the system under test
at each point?

Changed code

My Social Network App

Cache

Check

Send

response

Build

friends list

Build

Suggestions

Build

Newsfeed

Other developers’ changed code

You could set up multiple CI processes

• Run a short test daily
• or oftener

• maybe on every commit?

• More comprehensive test less often
• provides more accurate performance data

• Either way, you know that your integration is
working!

14

CI In Practice: Autograder

name: 'Build and Test the Grader'

on: # rebuild any PRs and main branch changes

pull_request:

push:

branches:

- main

- 'releases/*'

jobs:

build:

runs-on: self-hosted

steps:

- uses: actions/checkout@v2

- uses: actions/setup-node@v2

with:

node-version: '16'

- run: |

npm install

test:

runs-on: self-hosted

strategy:

matrix:

submission: [a, b, c, ts-ignore, linting-error, non-green-tests, empty]

steps:

- uses: actions/checkout@v2

- uses: actions/setup-node@v2

with:

node-version: '16'

- uses: ./

with:

submission-directory: solutions/${{ matrix.submission }}

test.yml (CI workflow file)

GitHub Actions Results

Example CI Pipeline - Autograder

• At a glance, see history of
build

Attributes and challenges for designing an
effective CI process

• Attributes of effective CI processes

• Challenges for effective CI processes

Attributes of effective CI processes

• Policies:
• Do not allow builds to remain broken for a long

time

• CI should run for every change

• CI should not completely replace pre-commit
testing

• Infrastructure:
• CI should be fast, providing feedback within

minutes or hours

• CI should be repeatable (deterministic)

Effective CI processes are run often enough
to reduce debugging effort

• Failed CI runs indicate a bug was
introduced, and caught in that run

• More changes per-CI run require more
manual debugging effort to assign
blame

• A single change per-CI run pinpoints the
culprit

Effective CI processes allocate enough resources
to mitigate flaky tests

• Flaky tests might be dependent on timing (failing due to timeouts)

• Running tests without enough CPU/RAM can result in increased flaky
failure rates and unreliable builds

“The Effects of Computational Resources on Flaky Tests”, Silva et al

https://arxiv.org/abs/2310.12132

Challenges and Solutions for Repeatable Builds

• Which commands to run to produce an executable?
(build systems)

• How to link third-party libraries? (dependency
managers)

• How to specify system-level software
requirements? (containers)

• How to specify infrastructure requirements?
(Infrastructure as code)

Build Systems Orchestrate Software
Engineering Tasks

• “Orchestrate” -> Execute in the right order, ideally
with concurrency, example tasks:

• Installing dependencies
• Compiling the code
• Running static analysis
• Generating documentation
• Running tests
• Creating artifacts for customers
• Deploying Code

• Example build systems: xMake, ant, maven, gradle,
npm…

Dependency Managers Organize External
Dependencies

• Addresses this problem: “Before you compile this code, install
commons-lang from the Apache website”

• Declare a dependency using coordinates (unique ID of a package plus
version)

• Packages are archived in common repositories; fetched/linked by
dependency manager

• Dependency managers handle transitive dependencies

• Examples: Maven, NPM, pip, cargo, apt

Specify and Depend on Package Versions with
Care

• Semantic Versioning is often expected:
• Library maintainers expected to indicate breaking

changes with version numbers

• Dependency consumers can specify constraints on
versions (e.g. accept 2.0.x)

Distribution of dependencies of all packages in NPM over time (2023, Pinckney et al)

https://semver.org/

Continuous Integration Service Models

• Self-hosted/managed on-premises or in cloud

• Jenkins

• Fully cloud managed

• GitHub Actions, CircleCI, Travis, many more…

• Billing model: pay per-build-minute running on SaaS
infrastructure

• “Self-hosted runners” run builds on your own
infrastructure, usually “free”

Continuous Delivery

• “Faster is safer”: Key values of continuous delivery
• Release frequently, in small batches

• Maintain key performance indicators to evaluate the impact
of updates

• Phase roll-outs

• Evaluate business impact of new features

Continuous Delivery is about deciding which
new features to deliver, and when

• You have a large system with many engineers
working on new features (and bug fixes ☺)

• When a new feature or fix is ready, how do you roll
it out to your users?

Continuous Delivery does not mean Immediate
Delivery

• Even if you are deploying every day
(“continuously”), you still have some latency

• A new feature I develop today won't be released
today

• But, a new feature I develop today can begin the
release pipeline today (minimizes risk)

• Release Engineer: gatekeeper who decides when
something is ready to go out, oversees the actual
deployment process

Ways to mitigate deployment risks

• Use a realistic staging environment

• Use post-deployment monitoring

• Use split deployments

• Use tools to automate deployment tasks

31

Build a staging environment to qualify
features for delivery

Testing

Environment

Staging Environment Production Environment

Beta/Dogfooding User Requests

Developer
Environments

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)

Post-delivery monitoring mitigates risk
• Consider both direct (e.g. business) metrics, and

indirect (e.g. system) metrics
• Hardware

• Voltages, temperatures, fan speeds, component health

• OS
• Memory usage, swap usage, disk space, CPU load

• Middleware
• Memory, thread/db connection pools, connections, response

time

• Applications
• Business transactions, conversion rate, status of 3rd party

components

Split Deployments Mitigate Risk

• Idea: Deploy to a complete production-like environment, but don't
have users use it, collect preliminary feedback

• Lower risk if a problem occurs in staging than in production

• Examples:
• “Eat your own dogfood”
• Beta/Alpha testers

Continuous Delivery Tools

• Simplest tools deploy from a branch to a service (e.g. Render.com,
Heroku)

• More complex tools:
• Auto-deploys from version control to a staging environment + promotes through

release pipeline
• Monitors key performance indicators to automatically take corrective actions
• Example: “Spinnaker” (Open-Sourced by Netflix, c 2015)

Example CD pipeline from Spinnaker’s documentation: https://spinnaker.io/docs/concepts/#application-deployment

https://spinnaker.io/
https://spinnaker.io/docs/concepts/#application-deployment

Tools for Monitoring Deployments

• Nagios (c 2002): Agent-based architecture (install agent on each
monitored host), extensible plugins for executing “checks” on hosts

• Track system-level metrics, app-level metrics, user-level KPIs

Monitoring can help identify operational issues

Grafana (AGPL, c 2014) InfluxDB (MIT license, c 2013)

Continuous Delivery Tools Take Automated
Actions

• Example: Automated roll-back of updates at Netflix
based on SPS

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

What not to do: Failed Deployment at Knight
Capital “In the week before go-live, a Knight engineer manually

deployed the new RLP code in SMARS to its 8 servers. However,
he made a mistake and did not copy the new code to one of the
servers. Knight did not have a second engineer review the
deployment, and neither was there an automated system to
alert anyone to the discrepancy. “

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What could Knight capital have done better?

• Use capture/replay testing instead of driving
market conditions in a test

• Avoid including “test” code in production
deployments

• Automate deployments

• Define and monitor risk-based KPIs

• Create checklists for responding to incidents

Monitoring Services Take Automated Actions

Beware of Metrics

• McNamara Fallacy

• Measure whatever can be easily measured

• Disregard that which cannot be measured
easily

• Presume that which cannot be measured
easily is not important

• Presume that which cannot be measured
easily does not exist

How should we allocate our testing
resources?

• How much unit testing should be required?

• When should we do code reviews?

• How often should we do integration tests?

• Different organizations may make different choices

Compare Continuous Delivery and TDD

• Test driven development
• Write and maintain tests per-feature

• Unit tests help locate bugs (at unit level)

• Integration/system tests also needed to locate
interaction-related faults

• Continuous delivery
• Write and maintain high-level observability metrics

• Deploy features one-at-a-time, look for canaries in
metrics

• Write fewer integration/system tests

CI in practice at Google

• Large scale example: Google TAP
• 50,000 unique changes per-day, 4 billion test cases per-day

• Pre-submit optimization: run fast tests for each individual
change (before code review).
Block merge if they fail.

• Then: run all affected tests; “build cop” monitors and acts
immediately to roll-back or fix

• Build cop monitors integration test runs

• Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Facebook: "Move fast and break things"

• de-prioritize unit tests

• Emphasis on getting features to users quickly

50

Facebook used to have an elaborate system
of branches
• dev branches get merged into master,
• then once a week all changes from the past week are

pulled into a release branch.
• For 3 days they “stabilize” the release branch – find

changes that are causing very bad behavior and back
them out.

• Then for the last 4 days of the week, every change that
survived that stabilization gets individually pushed to
production batched so that this happens 3x/day.

• Important to do small deploys so that you can isolate
bad changes)

• And most important: "your change doesn't go out
unless you're there that day to support it."

But this didn’t scale.
How many changes
going out? 500-700 PER
DAY. By 2016 might be
pushing 10k diffs per
week. ENORMOUS
effort to co-ordinate.

Deployment Example: Facebook.com

• Pre-2016

~1 week of development

3x Daily

Stabilize

3 days

All changes from week
that are ready for release

Release

4 days
All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out unless
you’re there that day at that time to

support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production “When in doubt back out”

release branch (weekly)

Post-2016: Truly Continuous Releases from
Master Branch (excerpts from blog post)

1. First, diffs that have passed a series of automated internal tests and land in master
are pushed out to Facebook employees.

2. In this stage, get push-blocking alerts if we’ve introduced a regression, and an
emergency stop button lets us keep the release from going any further.

3. If everything is OK, push the changes to 2 percent of production, where again we
collect signal and monitor alerts, especially for edge cases that our testing or
employee dogfooding may not have picked up.

4. Finally, roll out to 100 percent of production, where our Flytrap tool aggregates user
reports and alerts us to any anomalies.

5. Many of the changes are initially kept behind feature flags, which allows to roll out
mobile and web code releases independently from new features, helping to lower
the risk of any particular update causing a problem.

6. If we do find a problem, simply switch the feature off rather than revert back to a
previous version or fix forward.

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Post-2016: truly continuous releases from
master branch

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Review

• By now, you should be able to…
• Describe how continuous development helps to

catch errors sooner in the software lifecycle

• Describe strategies for performing quality-
assurance on software as and after it is delivered

• Compare and contrast continuous delivery with
test driven development as a quality assurance
strategy

	Module 13 Continuous Development
	CS 4530: Fundamentals of Software Engineering�Module 13: Continuous Development
	Learning objectives for this lesson
	Review: The Agile Model Reduces Risk by Embracing Change (~2000)
	Agile values fast quality feedback loops
	Agile requires a quality assurance process
	Example: Some bugs slip through testing, even in highly-regulated industries
	Continuous development practices improve code quality and dev velocity
	Continuous Integration (CI) provides global feedback on local changes
	A CI process is a software pipeline
	CI is triggered by commits, pull requests, and other actions
	Automating Feedback Loops is Powerful
	Typical CI pipeline
	Continuous Integration is Highly Configurable
	You could set up multiple CI processes
	CI In Practice: Autograder
	Example CI Pipeline - Autograder
	Attributes and challenges for designing an effective CI process
	Attributes of effective CI processes
	Effective CI processes are run often enough to reduce debugging effort
	Effective CI processes allocate enough resources to mitigate flaky tests
	Challenges and Solutions for Repeatable Builds
	Build Systems Orchestrate Software Engineering Tasks
	Dependency Managers Organize External Dependencies
	Specify and Depend on Package Versions with Care
	Continuous Integration Service Models
	Continuous Delivery
	Continuous Delivery is about deciding which new features to deliver, and when
	Continuous Delivery does not mean Immediate Delivery
	Ways to mitigate deployment risks
	Build a staging environment to qualify features for delivery
	Post-delivery monitoring mitigates risk
	Split Deployments Mitigate Risk
	Continuous Delivery Tools
	Tools for Monitoring Deployments
	Monitoring can help identify operational issues
	Continuous Delivery Tools Take Automated Actions
	What not to do: Failed Deployment at Knight Capital
	What could Knight capital have done better?
	Monitoring Services Take Automated Actions
	Beware of Metrics
	How should we allocate our testing resources?
	Compare Continuous Delivery and TDD
	CI in practice at Google
	Facebook: "Move fast and break things"
	Facebook used to have an elaborate system of branches
	Deployment Example: Facebook.com
	Post-2016: Truly Continuous Releases from Master Branch (excerpts from blog post)
	Post-2016: truly continuous releases from master branch
	Review

