CS 4530: Fundamentals of Software Engineering
Module 13: Continuous Development

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

© 2023-24 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives for this lesson

* By the end of this lesson, you should be
able to...

e Describe how continuous development helps to
catch errors sooner in the software lifecycle

* Describe strategies for performing quality-
assurance on software as and after it is delivered

 Compare and contrast continuous delivery with
test driven development as a quality assurance
strategy

Review: The Agile Model Reduces Risk by
Embracing Change (~2000)

* The Waterfall philosophy:

* "The project is too large and complex, and it will take months

(or years!) to plan, so once we come up with the plan, that
plan can not change"

* Reduce risk by proceeding in stages
* The Agile philosophy:

* The project is too large and compley, it is unlikely that we will
know exactly what we need right now, and to some extent,
we are inventing something new. We think that as we make
it, we will figure it out as we go”

* Reduce risk by limiting time on any one stage; then reassess.
(“time-boxing”)

e Reduce risk through automated testing

Agile values fast quality feedback loops

* Faster feedback = lower cost to fix bugs

7] Old feedback loop: infrequently
8 New feedback loop: continuously
13}
D
(O]
()
Feedback loops we’ve covered
Oo <)(9 OQ (O Qo Oo '% (@
2 L% G 2 % (0 e,
(@) ©. S 54 oy (S < Ny
% % % A %, g %, %
¢ %, Q. 7 S, % %,
S, % 2% 2 % PN
d (o O 4 %,
% %
2 O&O

Agile requires a quality assurance process

* Multiple processes have to work together to ensure
quality:
* unit testing/TDD

* mix of unit tests & integration tests (we'll see more of
this)

e code review
e continuous integration (also: watch for canaries
e continuous deployment (A/B, canaries, etc.)

e quality includes non-functional requirements (resource
consumption, response time) or generally speaking
extensibility, maintainability, etc.

* Quality is everyone’s responsibility

Example: Some bugs slip through testing,

even in highly-regulated industries

Aviation

After Alaska Airlines planes bump

runway while taking off from

Seattle, a scramble to ‘pull the plug’

By Dominic Gates, The Seattle Times
Updated: February 20,2023
Published: February 20, 2023

“That morning, a software bug in an update to the
DynamicSource tool caused it to provide seriously undervalued
weights for the airplanes.

The Alaska 737 captain said the data was on the order of 20,000
to 30,000 pounds light. With the total weight of those jets at
150,000 to 170,000 pounds, the error was enough to skew the
engine thrust and speed settings.

Both planes headed down the runway with less power and at
lower speed than they should have. And with the jets judged
lighter than they actually were, the pilots rotated too early

Both the Max 9 and 737-900ER have long passenger cabins,
which makes them more vulnerable to a tail strike when the nose
comes up too soon.” ...

... “A quick interim fix proved easy: When operations staff turned
off the automatic uplink of the data to the aircraft and switched
to manual requests “we didn’t have the bug anymore.”

Peyton said his team also checked the integrity of the calculation
itself before lifting the stoppage. All that was accomplished in 20
minutes.

The software code was permanently repaired about five hours
later.

Peyton added that even though the update to the
DynamicSource software had been tested over an extended
period, the bug was missed because it only presented when
many aircraft at the same time were using the system.

Subsequently, a test of the software under high demand was
developed.”

Photo: saiters_photography (IG, different plane/airpot)

https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/ 6

https://www.adn.com/alaska-news/aviation/2023/02/20/after-alaska-airlines-planes-bump-runway-a-scramble-to-pull-the-plug/

Continuous development practices improve
code quality and dev velocity

* Continuous integration: Perform frequent
Integrations with entire codebase, running
Integration-scale tests

 Continuous delivery: Deploy frequently
and monitor

Continuous Integration (CI) provides global
feedback on local changes

e Given: Our systems involve many components, some of
which might even be in different version control
repositories

* Consider: How does a developer get feedback on their
(local) change? Our changed code

Build Build Build Send
friends list Newsfeed Suggestions response

Other developers’ changed code

A CI process is a software pipeline

: Our changed code
Unit Test
Build Build Build Send
friends list Newsfeed Suggestions response

End-to-end Test

Prepare
Deployment

Automate this centrally, provide a central record of results

Other developers’ changed code

CI is triggered by commits, pull requests,
and other actions

Example: Small scale Cl, with a service like CircleCl,

GitHub Actions or TravisCl GitHub
commits code to checks for updates
Developer
>
O 929
®
CircleCl GitHub TravisCI
Actions

Runs build for each
commit

Automating Feedback Loops is Powerful

Consider tasks that are done by dozens of developers
(e.g. testing/deployment)

HOW LONG (AN YOU WORK ON MAKING A ROUTINE TASK MORE

EFFCIENT BEFORE YOURE SPENDING MORE TIME THAN YOU SAVE?
(ACROSS FIVE YEARS)

MO OFTEN YOU DO THE TRSK
Ofy Sopy DALY WEEKY MONFLY YEARLY

1 seconp |[T] oy | 2hoves |, 20 | r'imlura 2

MINUTES SECONDS
5 SELONDS @m |2 HOURS | 2 HouRS HNZUITES M|N§Tl-:5 sco0s

30 SEONDS |01 yeexs |[3] OAYS |12 Hovks | 2 wowes | (DO 1 2

IITTT™M
M‘(‘)Oa‘:{ 1 MINUTE 8m@m¥5 1| DAY | 4 Hours | 1 HOWR mm%res

TG 5 e | vowms| T2 T8 oave | 21 Houks | Svows | 23
5”%_.5 30 MNUTES DAY | 2 Hows

1 HOUR [2]oAvs| 5 Hows
6 HOURS 2 wears | [L] DAY
DH(Sm EDHYS

© Randal Munroe/xkcd, licensed CC-BY-SA
https://xkcd.com/1205/

https://xkcd.com/1205/

Typical CI pipeline

* Set up testing environment

* Set up tests
* Set up multiple input

* Run all tests against all inputs
* (preferably in parallel) I I | l |

sssss

* Record results and performance in central T~ | S
db

ggggggggggggggggggggggggggggg

12

Continuous Integration is Highly
Configurable

e Determining how to apply Cl can be non-trivial for a larger project,
all with a cost vs quality tradeoff: what is the cost of automation vs
the value of developer time?

* Do we integrate changes immediately, or do a pre-commit test?
* Which tests do we run when we integrate?

* When do we integrate code review?

* How do we compose the system under test Changed code

at each point?
Newsfeed

Build

Build
Suggesﬂons

fnendshst\
\

Send
response

Other developers’ changed code

You could set up multiple CI processes

* Run a short test daily
* or oftener
* maybe on every commit?

* More comprehensive test less often
* provides more accurate performance data

* Either way, you know that your integration is
working!

14

CI In Practice: Autograder

GitHub Actions Results

test.yml (CI workflow file)

name: 'Build and Test the Grader'
on: # rebuild any PRs and main branch changes
pull request:

push:
branches:
- main
- 'releases/*'
jobs:
build:
runs-on: self-hosted
steps:
- uses: actions/checkout@v2
- uses: actions/setup-node@v2
with:
node-version: 'l6'
- run: |
npm install
test:
runs-on: self-hosted
strategy:
matrix:
submission: [a, b, ¢, ts-ignore, linting-error, non-green-tests, empty]
steps:

- uses: actions/checkout@v2
- uses: actions/setup-node@v2

with:
node-version: '16'
- uses: ./
with:

submission-directory: solutions/${{ matrix.submission }}

test.yml

on: push
@ build 30s

Matrix: test

@ test (a) 3m 6s
° test (b) 3m 3s
@ test (c) 2m 58s
@ test (ts-ignore) 5s
@ test (linting-error) 31s
@ test (non-green-tests) 35s
@ test (empty) 4s

Example CI Pipeline - Autograder

* At a glance, see history of
build

@ linting
Build and Test the Grader #11: Commit f3da101 pushed by
jon-bell

@ Update handout and reference solution ba...
Check dist/ #10: Commit 3073a5b pushed by jon-bell

© Update handout and reference solution ba...

Build and Test the Grader #10: Commit 3073a5b pushed
by jon-bell

© Max 2 hints per mutant, provide the tests t...

Build and Test the Grader #9: Commit 4cfedee pushed by
jon-bell

@ Max 2 hints per mutant, provide the tests t...
Check dist/ #9: Commit 4cfed4ee pushed by jon-bell

@ New hint generator
Check dist/ #8: Commit 012e440 pushed by jon-bell

© New hint generator

Build and Test the Grader #8: Commit 012e440 pushed by
jon-bell

main

main

main

main

main

main

main

B 5 months ago .
(?) 4m 20s

a 5 months ago |

@ 41s

.o

.o

B 5 months ago

(?) 4m 29s

£J 6 months ago .
) 4m 45s

a 6 months ago

(?) 39s

E 6 months ago

@ 39s

a 6 months ago |

@Smgs

.o

.o

.o

.o

Attributes and challenges for designing an
effective CI process

 Attributes of effective Cl processes
* Challenges for effective Cl processes

Attributes of effective CI processes

* Policies:
~ Output the full test name

* Do not allow builds to remain broken for a long All checks have passed
ti m e 9 successful checks

e Cl should run for every change E _ , _ ‘
v O Check dist/ [check-dist (push) Successful in 30s Details
i CI Shou Id nOt Completely replace prE‘Commit v (@) Build and Test the Grader | test (reference) (push) .. Details i

te Sti n g v O Build and Test the Grader | test (b) (push) Succes... Details

v O Build and Test the Grader | build (push) Successfu... Details

(o]}

_~ fm\ Ruiild and Tact tha Gradar | tact (te-innara) (nnich) Nataile
1zE 1R

* Infrastructure:
o C I S h O u I d b e fa St, p rovi d i n g fe e d b a C k Wit h i n Tools: extract_features.py: correct define name for AP_RPM_ENABLED

, peterbarker committed 5 days ago X

m i n u te S O r h 0 u rs AP_Mission: prevent use of uninitialised stack data - 02

, peterbarker committed 5 days ago X

o CI ShOU Id be re peata ble (d@te rm i n iStiC) AP_HAL_ChibiOS: disable DMA on 12C on bdshot boards to free up DMA ch... --

'?‘) andyp1per authored and tridge committed 6 days ago X

SITL: Fixed rounding lat/Ing issue when running JSBSim SITL -
-) ShivKhanna authored and tridge committed 6 days ago X

AP_HAL_ChibiOS: define skyviper short board names
yuri-rage authored and tridge committed 6 days ago X

Effective CI processes are run often enough

to reduce debugging effort

* Failed Cl runs indicate a bug was
introduced, and caught in that run

* More changes per-Cl run require more
manual debugging effort to assign
blame

* A single change per-Cl run pinpoints the
culprit

prestodb / presto

Current Branches

. - 2

<

X = &

<

H S I B S S S B S S
Q

master

‘ﬂ James Sun

master

O Andrii Rosa

master

e Wenlei Xie

master

O Andrii Rosa

master

9 Maria Basmanova

master

& Maria Basmanova

master

@ Maria Basmanova

master

Leiging Cai

master

o Andrii Rosa

sild History Pull Requests

This patch bumps Alluxio dependency to 2.3.0

Handle query level timeouts in Presto on Spar

Fix flaky test for TestTempStorageSingleStrean

Check requirements under try-catch

Update TestHiveExternalWorkersQueries to cre

Introduce large dictionary mode in SliceDictior

Add Top N queries to TestHiveExternalWorkers:

Fix client-info test-name output

Add Thrift transport support for TaskStatus

>- #52300 passed
36392a2

-o- #52287 errored

aa55ea7

-0- #52284 errored

193a4cd

> #52283 passed

fff331f

- #52282 passed
746d7b5

o- #52277 passed

a%0d97a

#52271 errored
8b62d43

#52266 failed

467277a

- #52263 passed
fc94719

10 hrs 49 min 31 sec
2 days ago

11 hrs 6 min 44 sec
2 days ago

11 hrs 50 min 37 sec
2 days ago

11 hrs 3 min 20 sec

2 days ago

10 hrs 55 min 37 sec
2 days ago

10 hrs 43 min 30 sec

2 days ago

10 hrs 46 min 36 sec
3 days ago

10 hrs 35 min 49 sec

3days ago

11 hrs 13 min 42 sec
3 days ago

More options

Effective CI processes allocate enough resources
to mitigate flaky tests

* Flaky tests might be dependent on timing (failing due to timeouts)

* Running tests without enough CPU/RAM can result in increased flaky
failure rates and unreliable builds

CPU 4 and RAM 8GB
CPU 2 and RAM 16GB
CPU 2 and RAM 8GB
CPU 2 and RAM 4GB
CPU 1 and RAM 8GB
CPU 1 and RAM 4GB
CPU 0.5 and RAM 4GB
CPU 0.5 and RAM 2GB
CPU 0.25 and RAM 2GB
CPU 0.1 and RAM 2GB
CPU 0.1 and RAM 1GB

Configuration Ranked As
BiBest Price

M Best Reliability

MiBest Reliability and Price

0

5

“The Effects of Computational Resources on Flaky Tests”, Silva et al

10
Number of Projects

15

20

https://arxiv.org/abs/2310.12132

Challenges and Solutions for Repeatable Builds

* Which commands to run to produce an executable?
(build systems)

* How to link third-party libraries? (dependency
managers)

* How to specify system-level software
requirements? (containers)

* How to specify infrastructure requirements?
(Infrastructure as code)

Build Systems Orchestrate Software
Engineering Tasks

* “Orchestrate” -> Execute in the right order, ideally
with concurrency, example tasks:

* |nstalling dependencies
* Compiling the code
* Running static analysis
* Generating documentation
* Running tests
* Creating artifacts for customers
* Deploying Code
e Example build systems: xMake, ant, maven, gradle,
npm...

Dependency Managers Organize External
Dependencies

* Addresses this problem: “Before you compile this code, install
commons-lang from the Apache website”

* Declare a dependency using coordinates (unique ID of a package plus
version)

» Packages are archived in common repositories; fetched/linked by
dependency manager

» Dependency managers handle transitive dependencies &
* Examples: Maven, NPM, pip, cargo, apt

Specify and Depend on Package Versions with
Care

e Semantic Versioning is often expected:

 Library maintainers expected to indicate breaking
changes with version numbers

* Dependency consumers can specify constraints on
versions (e.g. accept 2.0.x)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

2.0.0 2.0.0-rc.2 2.0.0-rci 1.0.0 1.0.0-beta

100%

Semantic Versioning 2.0.0

Constraint type

B Exect=123)
B Bug-123)

75

=

50% I Minor (*1.23) Summary
B Geq=123)
. Any (*) Given a version number MAJOR.MINOR.PATCH, increment the:

Percentage of dependencies

25

R

Other 1. MAJOR version when you make incompatible APl changes
2. MINOR version when you add functionality in a backwards compatible manner
3. PATCH version when you make backwards compatible bug fixes
Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH
format.

0%

Distribution of dependencies of all packages in NPM over time (2023, Pinckney et al)

https://semver.org/

Continuous Integration Service Models

* Self-hosted/managed on-premises or in cloud
* Jenkins

* Fully cloud managed
e GitHub Actions, CircleCl, Travis, many more...

* Billing model: pay per-build-minute running on Saa$S
infrastructure

e “Self-hosted runners” run builds on your own
infrastructure, usually “free”

Continuous Delivery

e “Faster is safer”: Key values of continuous delivery

* Release frequently, in small batches

* Maintain key performance indicators to evaluate the impact
of updates

* Phase roll-outs
e Evaluate business impact of new features

Continuous Delivery is about deciding which
new features to deliver, and when

* You have a large system with many engineers
working on new features (and bug fixes ©)

* When a new feature or fix is ready, how do you roll
it out to your users?

Continuous Delivery does not mean Immediate
Delivery

* Even if you are deploying every day
(“continuously”), you still have some latency

* A new feature | develop today won't be released
today

* But, a new feature | develop today can begin the
release pipeline today (minimizes risk)

* Release Engineer: gatekeeper who decides when
something is ready to go out, oversees the actual
deployment process

Ways to mitigate deployment risks

e Use a realistic staging environment

* Use post-deployment monitoring

* Use split deployments

e Use tools to automate deployment tasks

31

Build a staging environment to qualify
features for delivery

Developer
Environments Beta/Dogfooding User Requests

Testing
Environment

Staging Environment Production Environment

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)

Post-delivery monitoring mitigates risk

* Consider both direct (e.g. business) metrics, and
indirect (e.g. system) metrics

 Hardware
* \Voltages, temperatures, fan speeds, component health

* OS

* Memory usage, swap usage, disk space, CPU load

 Middleware
 Memory, thread/db connection pools, connections, response
time
* Applications

* Business transactions, conversion rate, status of 3rd party
components

Split Deployments Mitigate Risk

 |dea: Deploy to a complete production-like environment, but don't
have users use it, collect preliminary feedback

* Lower risk if a problem occurs in staging than in production

* Examples:
e “Eat your own dogfood”
* Beta/Alpha testers

Old Version R

Web Applicaticn Database
server SErver Server
Web Application Database
Server Server Server

Mew Version

Most users
(9509)

Some users
[5%)

Continuous Delivery Tools

* Simplest tools deploy from a branch to a service (e.g. Render.com,
Heroku)

* More complex tools:

* Auto-deploys from version control to a staging environment + promotes through
release pipeline

* Monitors key performance indicators to automatically take corrective actions
* Example: “Spinnaker” (Open-Sourced by Netflix, c 2015)

Find image Cutover Deploy PROD Tear down Destroy
Start from TEST Deploy CANARY manual approval (red/black) CANARY old PROD

Wait 30 mins Wait 2 hrs

Example CD pipeline from Spinnaker’s documentation: https://spinnaker.io/docs/concepts/#application-deployment

https://spinnaker.io/
https://spinnaker.io/docs/concepts/#application-deployment

Tools for Monitoring Deployments

e Nagios (c 2002): Agent-based architecture (install agent on each
monitored host), extensible plugins for executing “checks” on hosts

* Track system-level metrics, app-level metrics, user-level KPIs

;{fiCIﬂGA

Q Q Search... Y
.o"‘\ ‘9
£3i Dashboard S & L
@Q\.\O 06'0& 6@& 09\}6\@ & (90‘9 o © @ @G}F
L Pl > o & 9'7"&\0@ & & o""b «*\oov\oa o éob & e&"'&
C F N TN F e P P EL P LR e
Host Problems SR S S 900 *('\é && I &S Q‘o ‘9\\} ‘9\0 ¥ & f;F AN
Service Problems esxio1
Service Grid esxi0o2
Current Downtimes esxio3
o esxioa @@ [] [N [] []
#) Overview esxi05
D History esxi06
esxioz @@ ® 00 o o
& Documentation .
jbhpc .

2 System nagios

Monitoring can help identify operational issues

i Active Memory o)
Overall Cluster Memory Usage 106
_time —value _field _measurement fuzzer host target
2022-09-0513:52:00 10.35G active mem afiplusplus_with_knobs G4PlusVM136 sqlite3
34078 6
320TB
66
3TB
46
280TB
00:00 0200 0400 0600 08:00 1000 1200 1400 1600 1800 2000 22:00 ERESHR S S000:00 2022-09-06 08:00:00
CPU Usage
Overall Cluster CPU Usage
40
1600 Ghz 35
1400 Ghz M =
1200 Ghz
25
1000 Ghz
20
800 Ghz
15
600 Ghz
10
400 Ghz
200 Ghz 2022-09-05 20:00:00 2022-09-06 08:00:00

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Grafana (AGPL, c 2014) InfluxDB (MIT license, c 2013)

Continuous Delivery Tools Take Automated

Actions

* Example: Automated roll-back of updates at Netflix

based on SPS

SPS

PROD:US-EAST-1

SPS Server Successes (License Requests)

_—__TIJ
Tq_ﬂﬁ_f

Legend: M Experiment M Contro |

PROD:US-EAST-1

SPS Client Successes (Startplays)

=SENgusEg

MONITORING!

https://www.youtube.com/watch?v=qyzymLli9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

What not to do: Failed Deployment at Knight

Ca p Ita I “In the week before go-live, a Knight engineer manually
deployed the new RLP code in SMARS to its 8 servers. However,

Knightmare: A DevOps he made a mistake and did not copy the new code to one of the

servers. Knight did not have a second engineer review the

Cautionary Tale deployment, and neither was there an automated system to

alert anyone to the discrepancy. “

[was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.
Since that conference I have been asked by several people to share the story through my blog.
This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

This is the story of how a company with nearly $400 million in assets went bankrupt in 45-

minutes because of a failed deployment.

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html

What could Knight capital have done better?

* Use capture/replay testing instead of driving
market conditions in a test

* Avoid including “test” code in production
deployments

* Automate deployments
* Define and monitor risk-based KPIs
* Create checklists for responding to incidents

Monitoring Services Take Automated Actions

;"iCIﬂGA

Dashboard

© Problems

i\ Overview

D History

Event Grid
Event Overview
Notifications

Timeline

& Documentation

&% System

#~ Configuration

& jon

Notifications

« 12 3 4 5 6 7

Q Search...

OK
2022-02-18
08:49:05

OK
2022-02-18
08:49:05

CRITICAL
2022-02-18
08:42:05

CRITICAL
2022-02-18
08:42:05

v (@

24 25 » # 25 ~ Sortby Notification Start v |Z
Y
Slurm Nodes on nagios Sent to jon
OK - 0 nodes unreachable, 332 reachable
Slurm Nodes on nagios Sent to icingaadmin
OK - 0 nodes unreachable, 332 reachable

Slurm Nodes on nagios

WARNING - 7 nodes unreachable, 326 reachable

Slurm Nodes on nagios

WARNING - 7 nodes unreachable, 326 reachable

Slurm Nodes on nagios
CRITICAL - 65 nodes unreachable,

Slurm Nodes on nagios
CRITICAL - 65 nodes unreachable,

Slurm Nodes on nagios
WARNING - 12 nodes unreachable,

Slurm Nodes on nagios
WARNING - 12 nodes unreachable,

161 reachable

161 reachable

205 reachable

205 reachable

Sent to jon

Sent to icingaadmin

Sent to icingaadmin

Sent to jon

Sent to icingaadmin

Sent to jon

Current Service State

UpP
since 2021-11

OK
for 1m 52s

Event Details
Type

Start time

End time

Reason

State

Escalated
Contacts notified

Output

Service: Slurm Nodes

Notification
2022-02-18 08:42:05
2022-02-18 08:42:05
Normal notification
@ crITICAL

No

2

CRITICAL - 65 nodes unreachable,

161 react

Beware of Metrics

* McNamara Fallacy
* Measure whatever can be easily measured

* Disregard that which cannot be measured
easily

* Presume that which cannot be measured
easily is not important

* Presume that which cannot be measured
easily does not exist

How should we allocate our testing
resources?

* How much unit testing should be required?

* When should we do code reviews?

* How often should we do integration tests?

* Different organizations may make different choices

Compare Continuous Delivery and TDD

e Test driven development
* Write and maintain tests per-feature
* Unit tests help locate bugs (at unit level)

* Integration/system tests also needed to locate
interaction-related faults

* Continuous delivery
* Write and maintain high-level observability metrics

* Deploy features one-at-a-time, look for canaries in
metrics

* Write fewer integration/system tests

CI in practice at Google

* Large scale example: Google TAP

* 50,000 unique changes per-day, 4 billion test cases per-day

* Pre-submit optimization: run fast tests for each individual
change (before code review).
Block merge if they fail.

e Then: run all affected tests; “build cop” monitors and acts
immediately to roll-back or fix

* Build cop monitors integration test runs
* Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Facebook: "Move fast and break things"

* de-prioritize unit tests
 Emphasis on getting features to users quickly

50

Facebook used to have an elaborate system
of branches

dev branches get merged into master,

then once a week all chan%]es from the past week are
pulled into a release branch.

For 3 days they “stabilize” the release branch — find
climanges that are causing very bad behavior and back
them out.

Then for the last 4 days of the week, every change that
survived that stabilization gets individually pushed to
production batched so that this happens 3x/day.

Important to do small deploys so that you can isolate
bad changes)

And most important: "your change doesn't go out
unless you're there that day to support it.”

But this didn’t scale.
How many changes
going out? 500-700 PER
DAY. By 2016 might be
pushing 10k diffs per
week. ENORMOUS
effort to co-ordinate.

Deployment Example: Facebook.com

* Pre-2016

Developers working in their own branch

=== When feature is ready, push as 1 change to master branch

~1 week of development

All changes that survived stabilizing

master branch 3 days 4 days

|
|
|
|
| Stabiize
release branch (weekly) ¥

| | | |

All changes from week : : : :

that are ready for release X I X '

| | | |

\4 \4 \4 \4

Your change doesn’t go out unless
: you’re there that day at that time to .
prOdUCt|On support it! S Daly “When in doubt back out”

Post-2016: Truly Continuous Releases from
Master Branch (excerpts from blog post)

1. First, diffs that have passed a series of automated internal tests and land in master
are pushed out to Facebook employees.

2. Inthis stage, get push-blocking alerts if we’ve introduced a regression, and an
emergency stop button lets us keep the release from going any further.

3. Ifeverything is OK, push the changes to 2 percent of production, where again we
collect signal and monitor alerts, especially for edge cases that our testing or
employee dogfooding may not have picked up.

4. Finally, roll out to 100 percent of production, where our Flytrap tool aggregates user
reports and alerts us to any anomalies.

5. Many of the changes are initially kept behind feature flags, which allows to roll out
mobile and web code releases independently from new features, helping to lower
the risk of any particular update causing a problem.

6. Ifwe do find a problem, simply switch the feature off rather than revert back to a
previous version or fix forward.

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

Post-2016: truly continuous releases from
master branch

Push-blocking alerts

Push-blocking tasks
Crashbot for WWW
Emergency button

100% production

Push-blocking tasks
Emergency button

2% production Push-blocking aiertsl

employees

Master

Review

* By now, you should be able to...

* Describe how continuous development helps to
catch errors sooner in the software lifecycle

* Describe strategies for performing quality-
assurance on software as and after it is delivered

* Compare and contrast continuous delivery with
test driven development as a quality assurance
strategy

	Module 13 Continuous Development
	CS 4530: Fundamentals of Software Engineering�Module 13: Continuous Development
	Learning objectives for this lesson
	Review: The Agile Model Reduces Risk by Embracing Change (~2000)
	Agile values fast quality feedback loops
	Agile requires a quality assurance process
	Example: Some bugs slip through testing, even in highly-regulated industries
	Continuous development practices improve code quality and dev velocity
	Continuous Integration (CI) provides global feedback on local changes
	A CI process is a software pipeline
	CI is triggered by commits, pull requests, and other actions
	Automating Feedback Loops is Powerful
	Typical CI pipeline
	Continuous Integration is Highly Configurable
	You could set up multiple CI processes
	CI In Practice: Autograder
	Example CI Pipeline - Autograder
	Attributes and challenges for designing an effective CI process
	Attributes of effective CI processes
	Effective CI processes are run often enough to reduce debugging effort
	Effective CI processes allocate enough resources to mitigate flaky tests
	Challenges and Solutions for Repeatable Builds
	Build Systems Orchestrate Software Engineering Tasks
	Dependency Managers Organize External Dependencies
	Specify and Depend on Package Versions with Care
	Continuous Integration Service Models
	Continuous Delivery
	Continuous Delivery is about deciding which new features to deliver, and when
	Continuous Delivery does not mean Immediate Delivery
	Ways to mitigate deployment risks
	Build a staging environment to qualify features for delivery
	Post-delivery monitoring mitigates risk
	Split Deployments Mitigate Risk
	Continuous Delivery Tools
	Tools for Monitoring Deployments
	Monitoring can help identify operational issues
	Continuous Delivery Tools Take Automated Actions
	What not to do: Failed Deployment at Knight Capital
	What could Knight capital have done better?
	Monitoring Services Take Automated Actions
	Beware of Metrics
	How should we allocate our testing resources?
	Compare Continuous Delivery and TDD
	CI in practice at Google
	Facebook: "Move fast and break things"
	Facebook used to have an elaborate system of branches
	Deployment Example: Facebook.com
	Post-2016: Truly Continuous Releases from Master Branch (excerpts from blog post)
	Post-2016: truly continuous releases from master branch
	Review

